Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1776-1785, 2017.
Article in Chinese | WPRIM | ID: wpr-243672

ABSTRACT

To gain more insights into the rice base editor (rBE3 and rBE4), we evaluated the mutation efficiency, off-target and inheritance of OsSERK1(D428N) and pi-ta(S918F) genes modified with rBE endonucleases. We predicted and analyzed the putative off-target sites of the sgRNA designed for OsSERK1(D428N) and pi-ta(S918F) by PCR amplification and Sanger sequencing. Then we further characterized the inheritance and stability of targeted base mutations and T-DNA segregation in the progeny of the self-fertilized T0 plants. Analysis of the DNA sequencing data of T0 plants of OsSERK1(D428N) revealed no nucleotide change at any of the four potential off-target sites. For OsSERK1(D428N) and Os08g07774 carry the same sgRNA targeting sites, base substitution at both two loci were detected at a frequency of 41.67%. The targeted base mutations could be transmitted readily to T1 progeny. Furthermore, genetic segregation caused the loss of T-DNA at a frequency between 25.0% and 40.9% in the T1 transgenic plants of OsSERK1(D428N) and pi-ta(S918F). These results demonstrated that the rBE3 and rBE4 systems could mediate specifically targeted base editing in one- or multi-site, and the targeted base editing could be stably inherited to next generation.

2.
Chinese Journal of Biotechnology ; (12): 284-293, 2017.
Article in Chinese | WPRIM | ID: wpr-310590

ABSTRACT

To study the biological function of DNAH2 (Homo sapiens dynein, axonemal, heavy chain 2) gene, we constructed human stable U2OS cell line of DNAH2 gene knockout through CRISPR/Cas9n double nick system. The A, B sgRNAs (Single guide RNA) and complementary strands were designed and synthesized. The double-stranded structures were formed during annealing, and connected with BbsⅠ cohesive ends-containing pX462 linear vector to construct the recombinant eukaryotic expression plasmids, including pX462-DNAH2-A and pX462-DNAH2-B. After the co-transfection of the two plasmids into U2OS cells, the addition of puromycin and limiting dilution method were used to obtain positive monoclonal cell line. Western blotting assay was then performed to detect the expression of DNAH2 protein, and PCR-sequencing technology was finally utilized to analyze the mutation feature. The results showed that A, B sgRNAs duplex was successfully inserted into pX462 vector, and DNAH2 protein was not expressed and DNAH2 gene suffered from the frame-shift mutation in U2OS-DNAH2-KO monoclonal cell line. These demonstrated that DNAH2 knockout U2OS stable cell line was successfully constructed through CRISPR/Cas9n double nick system, which providing a useful tool for the study of DNAH2 gene.

3.
Tianjin Medical Journal ; (12): 1104-1107, 2015.
Article in Chinese | WPRIM | ID: wpr-479191

ABSTRACT

Objective To knock out Asxl2 gene in murine embryonic fibroblast cell line NIH3T3 using CRISPR/Cas9n system. Methods A pair of sgRNAs which targeted exon 5 of Asxl2 gene were designed and subcloned into the pX462 vec?tor. The recombined plasmids were verified by sequencing and transfected into NIH3T3 cell line. Single cells were isolated through serial dilutions, followed by an expansion period to obtain new monoclonal cell lines. The genomic DNA of the new monoclonal cell lines was extracted and a DNA fragment flanked the target site was amplified by genotyping PCR then se?quenced. Lastly, western blotting were applied to confirm whether Asxl2 was successfully knocked out. Results The CRIS?PR/Cas9n plasmids that targeted Asxl2 were successfully constructed. NIH3T3 cells were co-transfected with the two recom?binant constructs. After puromycin selection, subclonal cell lines were obtained and one of them was validated by genotyping PCR-sequencing. Western blotting also confirmed that Asxl2 was completely depleted in the NIH3T3 cell line. Conclu?sion CRISPR/Cas9n plasmids that targeted Asxl2 were successfully constructed therefore a Asxl2 knockout NIH3T3 stable cell line was established via this system.

SELECTION OF CITATIONS
SEARCH DETAIL